Novel Ionic Liquids for CO₂ Capture: Computational Design to Laboratory Demonstration

W. F. Schneider, University of Notre Dame, <u>wschneider@nd.edu</u>

- Non-aqueous solvents desirable for CO₂ separations
- <u>Ionic liquids</u> are ambient temperature liquid organic salts
 - Bulky organic cations and anions
 - Unlimited diversity of potential compounds
- Why investigate ionic liquids for CO₂ capture?
 - –IL physical properties favorable for CO₂ capture
 - Negligible volatility
 - -High intrinsic physical selectivity for CO₂
- CO₂-specific chemical functionality readily introduced
 - –"Task-specific ionic liquids" (TSILs)

Common IL cations

Common IL anions

CO₂ Capture by a Task-Specific Ionic Liquid

Bleanor D. Bates, Rebecca D. Mayton, Ioanna Ntai, and James H. Davis, Jr.*

Novel Ionic Liquids for CO₂ Capture: Computational Design to Laboratory Demonstration

W. F. Schneider, University of Notre Dame, wschneider@nd.edu

Problems with existing CO₂ TSILs

- Lack of reaction energy "tunability"
- Potentially complex reaction stoichiometry
- Very high viscosity in reacted state

Key project elements

- Computationally design new TSILs that have properties tuned for CO2 capture
 - Electronic structure, classical atomistic simulations
- Apply state-of-the-art experimental tools to determine ionic liquid physical properties
 - Synthesis, property measurement, characterization
- Tightly integrate process modeling with molecule discovery efforts
 - -HYSYS, Aspen

